Closing Thu: 15.3, 15.4 Midterm 2 is Tuesday, March 1 It covers 13.3/4, 14.1/3/4/7, 15.1-15.4 Closing Next Thu: 15.5

Recall a few additional double integral applications

$$\iint_R 1 \, dA = \text{Area of R}$$

$$\frac{1}{\text{Area of R}} \iint_{R} f(x, y) dA$$

= Average value of f(x, y) over R

Entry Task:

The temperature at each point on the xy-plane is given by T(x,y) = 3xsin(y) degrees Celsius. Find the average temperature over the region R on the xy-plane bounded by y = 0, $y = x^2$, and x = 4.

15.4 Double Integrals over Polar Regions

Recall:

θ = angle measured from positive x-axis r = distance from origin x = r cos(θ), y = r sin(θ), x² + y² = r²
To set up a double integral in polar we will:
1. Describing the region in polar
2. Replace "x" by "r cos(θ)"
3. Replace "y" by "r sin(θ)"
4. Replace "dA" by "r dr dθ"

Step 1: Describing regions in polar.

Examples:

Describe the regions

-2 -1_1 1 2 3 4

Some homework

HW 15.4/4: Describe the region in the first quadrant between the circles $x^{2} + y^{2} = 16$ and $x^{2} + y^{2} = 4x$ using polar.

HW 15.4/5:

Describe one closed loop of $r = 6\cos(3\theta)$.

HW 15.4/7: Describe the region inside $r = 1+cos(\theta)$ and outside $r = 3cos(\theta)$.

General Note About Ch. 15:

If given a description of a solid in words,

- Solve for "z" anywhere you see it. That is your integrand(s).
- 2. Graph region in the xy-plane.
 - Graph all given x and y constraints.
 - Find intersection of all surfaces.

Examples:

HW 15.3/10:

Find the volume enclosed by $z = 4x^2 + 4y^2$ and the planes x = 0, y = 2, y = x, and z = 0.

HW 15.4/8:

Find the volume below $z = 18 - 2x^2 - 2y^2$ and above the xy-plane.

HW 15.4/9:

Find the volume enclosed by $-x^2 - y^2 + z^2 = 22$ and z = 5.

HW 15.4/10:

Find the volume above the upper cone $z = \sqrt{x^2 + y^2}$ and below $x^2 + y^2 + z^2 = 81$

Step 2: Set up your integral in polar.

Conceptual notes:

Cartesian

Polar

Examples:

1. Compute

$$\iint\limits_{R} \frac{\cos(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} dA$$

2. HW 15.4/5:

Find the area of one closed loop of $r = 6\cos(3\theta)$.

3. HW 15.4/4:

Evaluate

$$\iint_{R} x \, dA$$

over the region in the first quadrant between the
circles x² + y² = 16 and x² + y² = 4x using polar

Moral:

Three ways to set up a double integral: *"Top/Bottom"*:

$$\iint\limits_R f(x,y)dA = \int\limits_a^b \int\limits_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx$$

"Left/Right":

$$\iint\limits_R f(x,y)dA = \int\limits_c^d \int\limits_{h_1(y)}^{h_2(y)} f(x,y) \, dx \, dy$$

"Inside/Outside":

$$\iint_{R} f(x, y) dA$$

= $\int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos(\theta), r \sin(\theta)) r dr d\theta$