Closing Thu: $\quad 15.3,15.4$
Midterm 2 is Tuesday, March 1
It covers 13.3/4, 14.1/3/4/7, 15.1-15.4
Closing Next Thu: 15.5

Recall a few additional double integral

 applications$$
\begin{gathered}
\iint_{R} 1 d A=\text { Area of } \mathrm{R} \\
\frac{1}{\text { Area of } \mathrm{R}} \iint_{R} f(x, y) d A \\
=\text { Average value of } \mathrm{f}(\mathrm{x}, \mathrm{y}) \text { over } \mathrm{R}
\end{gathered}
$$

Entry Task:
The temperature at each point on the xy-plane is given by $T(x, y)=3 x \sin (y)$ degrees Celsius. Find the average temperature over the region R on the $x y$-plane bounded by $y=0, y=x^{2}$, and $x=4$.

15.4 Double Integrals over Polar Regions

Recall:

θ = angle measured from positive x-axis
$r=$ distance from origin
$x=r \cos (\theta), y=r \sin (\theta), x^{2}+y^{2}=r^{2}$

To set up a double integral in polar we will:

1. Describing the region in polar
2. Replace " x " by " $r \cos (\theta)$ "
3. Replace " y " by " $r \sin (\theta)$ "
4. Replace "dA" by "r dr d日"

Step 1: Describing regions in polar.

Examples:
Describe the regions

Some homework
HW 15.4/4: Describe the region in the first quadrant between the circles
$x^{2}+y^{2}=16$ and $x^{2}+y^{2}=4 x$ using polar.

HW 15.4/5:

Describe one closed loop of $r=6 \cos (3 \theta)$.

HW 15.4/7:

Describe the region inside $r=1+\cos (\theta)$ and outside $r=3 \cos (\theta)$.

General Note About Ch. 15:

If given a description of a solid in words,

1. Solve for " z " anywhere you see it. That is your integrand(s).
2. Graph region in the xy-plane.

- Graph all given x and y constraints.
- Find intersection of all surfaces.

Examples:

HW 15.3/10:

Find the volume enclosed by $z=4 x^{2}+4 y^{2}$ and the planes $\mathrm{x}=0, \mathrm{y}=2, \mathrm{y}=\mathrm{x}$, and $\mathrm{z}=0$.

HW 15.4/8:

Find the volume below $z=18-2 x^{2}-2 y^{2}$ and above the xy-plane.

HW 15.4/9:

Find the volume enclosed by $-x^{2}-y^{2}+z^{2}=22$
and $\mathrm{z}=5$.
HW 15.4/10:
Find the volume above the upper cone
$z=\sqrt{x^{2}+y^{2}}$ and below $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=81$

Step 2: Set up your integral in polar.

Conceptual notes:
Cartesian

FIGURE 4

Polar

Examples:

1. Compute

$$
\iint_{R} \frac{\cos \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}} d A
$$

2. HW 15.4/5:

Find the area of one closed loop of $r=6 \cos (3 \theta)$.

3. HW 15.4/4:

Evaluate

$$
\iint_{R} x d A
$$

over the region in the first quadrant between the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=4 x$ using polar

Moral:

Three ways to set up a double integral:
"Top/Bottom":

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

"Left/Right":

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

"Inside/Outside":

$$
\begin{aligned}
& \iint_{R} f(x, y) d A \\
& =\int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
\end{aligned}
$$

